Metabolite Identification

Characterize and quantify metabolites with speed, efficiency, and confidence.

Sign up to receive updates

Biopharmaceutical System Solution with UNIFI Scientific Information System for the Evaluation of Peptide Catabolism

This white paper discusses the use of the Waters Biopharmaceutical Peptide Mapping solution for the characterization of peptide catabolism, using a dedicated workflow.

A Quantitative UPLC-MS/MS Research Method for the Measurement of Acetaminophen and 5 Metabolites in Plasma

This application note describes a sensitive, validated, UPLC-based bioanalytical research method for the quantification of acetaminophen and five metabolites in plasma.

The research method uses reversed-phase UPLC to obtain suitable chromatographic properties, such as retention of the analytes and the resolution of metabolites, with a run time of 7.5 min. A quantitative method was validated over the range 16 ng/mL–500 ng/mL for acetaminophen, 3.2 ng/mL–100 ng/mL for both acetaminophen glucuronide and sulfate, 0.64 ng/mL–20 ng/mL for acetaminophen cysteinyl and glutathione metabolite and 0.96 ng/mL–20 ng/mL for acetaminophen N-acetyl cysteinyl metabolite. The methodology required only 5 μL of plasma and exhibited excellent sensitivity, robustness and reproducibility.

Implementation of a novel ultra fast metabolic stability analysis method using exact mass TOF-MS

An advanced bioanalytical workflow for metabolic stability has been developed that demonstrates significant advantages over traditional triple quadrupole based methods, including significant increases in throughput, data processing capabilities and overall data quality.

UPLC-QTOF-MS/MS based screening and identification of the metabolites in rat bile after oral administration of imperatorin

Metabolites in bile samples of rats orallyadministrated with imperatorin were detected and identifiedthrough ultra-performance liquid chromatography coupled withelectrospray ionization quadrupole time-of-flight tandem massspectrometry. Thepresent experimental results lead to a better understanding of thebio-transformations and the pharmaceutical applications of imper-atorin.

Building a Collision Cross Section Library of Pharmaceutical Drugs Using an IMS QTof Platform

This poster presented at 65th ASMS Conference from June 4-8 in Indianapolis, IN.

Building a Collision Cross Section Library of Pharmaceutical Drugs Using an IMS QTof Platform

This poster presented at 65th ASMS Conference from June 4-8 in Indianapolis, IN.

A Quantitative UPLC-MS/MS Research Method for the Measurement of Acetaminophen and 5 Metabolites in Plasma

This application note describes a sensitive, validated, UPLC-based bioanalytical research method for the quantification of acetaminophen and five metabolites in plasma.

The research method uses reversed-phase UPLC to obtain suitable chromatographic properties, such as retention of the analytes and the resolution of metabolites, with a run time of 7.5 min. A quantitative method was validated over the range 16 ng/mL–500 ng/mL for acetaminophen, 3.2 ng/mL–100 ng/mL for both acetaminophen glucuronide and sulfate, 0.64 ng/mL–20 ng/mL for acetaminophen cysteinyl and glutathione metabolite and 0.96 ng/mL–20 ng/mL for acetaminophen N-acetyl cysteinyl metabolite. The methodology required only 5 μL of plasma and exhibited excellent sensitivity, robustness and reproducibility.

Data Independent and Data Dependent Acquisition Strategies Combined With Ion Mobility for Drug Metabolism and Pharmacokinetics

This poster presented at 12th Annual Great Lakes DMDG meeting from May 4-5th in Michigan.

Ion Mobility-enabled Data-dependent Experiments Distinguishing Co-eluting Isomeric Metabolites Using an IMS-QTof Mass Spectrometer

Co-eluting metabolites attributed to glucuronides of dihydroxylated metabolites were successfully characterised using IMS-enabled DDA, generating two distinct precursor ion MS spectra and product ion MS/MS spectra for the drift time separated metabolites. The m/z and drift time filtered data provide cleaner, unambiguous spectra and increases confidence in structural assignment compared with simple m/z-selective DDA.

Building a Collision Cross Section Library of Pharmaceutical Drugs Using the Vion IMS QTof Platform

The present study suggests that Vion is a robust platform for routine qualitative and quantitative analysis. The high accuracy in CCS and m/z measurement enables its utility for ion mobility and m/z-based compound identification and measurements.